Baluns, Balance, and Differential Signaling
For Signal Cancellation
Eliminate unwanted signals without filtering.

Balanced Mixers
Isolate ports and suppress even order spurious products

Differential Signaling
Eliminate common mode noise

Differential Circuits
Eliminate even harmonic products and IP2
Power Combining

In Phase

Maximize Power

- Increases power handling, linearity, or power generation
- Usually lowest loss for broadband applications

Quadrature Phase

Eliminate Reflections

- Increases linearity or power handling
- Improves Return Losses

Out of Phase

Eliminates Noise and Harmonics

- Increases linearity and power handling
- Eliminates common mode and even harmonics

Mixed Phase

Eliminates Input Signal for Harmonics

- Useful for gathering converted signals
- Used in mixers, doublers, quadruplers, etc.
What does a balun do?

A Balun Creates Equal and Opposite Signals

Mode Converter
A passive balun converts bidirectionally between differential and single ended signals.

Balun Transformer
Transforms between single ended and differential impedance according to the *impedance ratio*.

Isolation
High insertion loss *between* differential ports improves signal integrity.

Balance
Amplitude and phase balance quantify how close to ideal a real balun is.

Marki Microwave Inc.
Common Mode Rejection

- Amplitude Balance
 - Good baluns provide ±2 dB
 - Marki baluns provide ±1 dB

- Phase Balance
 - Good baluns provide 15-20°
 - Marki baluns provide 5-10°

Common Mode Rejection
- Quantifies how much of a signal in the ‘common mode’ of a differential line will be rejected
Mixed Mode S-Parameters

Three ports with one mode each
Better for isolation and output impedance matching

S-Parameters

+ Differential
- Mode d
+ Common
+ Mode c

Mixed Mode S-Parameters
Two ports, differential port has two modes
Better for differential return loss, common mode rejection, and mode conversion loss

Marki Microwave Inc.
Importance of Isolation

Without Isolation
Lack of isolation causes poor differential return loss

With Isolation
Signal integrity improved in Differential to Single ended conversion

Isolated Baluns Allow Complete Measurements

Marki Isolation Baluns

- Linear
- Nonlinear

Signal Integrity

Two Port VNA with Post-Processing
- Linear S-Parameters
- Step Response
- Impulse Response

Four Port Dual Source VNA
- Power Compression
- Harmonic Generation
- Two Tone Intermodulation
- Multi-tone Spurious
- Eye Diagrams
- Bit Error Ratio
- Error Vector Magnitude
- Total Harmonic Distortion
- Spectral Regrowth

VNA

In 0° 180° 0° Out
Top Three Mistakes

1. Length Matching
 - Any differential trace mismatch produces a linear phase walk
 - Traces, cables, connectors, and other interconnects

2. Trace Isolation
 - Neighboring channels can appear as aggressors
 - Far away channels will be more ‘common mode’ than nearby

3. Lack of Isolation
 - Low differential port isolation = high differential mode RL
 - Bad for differential to single ended conversions
Poll Questions
Balun Types: Transformer Based

Flux Coupled Balun Transformer
- All coupling provided by magnetic field
- Provides ground/DC isolation
- Massive bandwidth ratio
- Limited to low frequencies

Transmission Line Balun
- Float the ground to create differential output
- Has problematic half wave resonance

Transmission Line Transformer Balun
- Combines transmission line balun with magnetic material to eliminate resonance and extend low end
- Massive bandwidth ratio
- High frequency extends >10 GHz
- Typically lossy (>2 dB excess insertion loss)

New 10 MHz-12 GHz smaller form factor SMT Balun
Balun Types: Coupler Based

Coupled Lines Based Baluns
Coupled line structures with open/short ports can be designed as baluns
These baluns can be integrated and made in a planar structure
Hundreds of circuit structure options
Low frequency is limited to 1-2 GHz

New 2 GHz-20 GHz MMIC balun SMT MBAL-0220SM
Power Divider – Phase Shift

Differential signaling can be realized by separating the signal first and then applying a phase shift.

Can provide extended high frequency, extended low frequency, and high isolation.
Balun Types: Magic Tee/Hybrid Coupler

Rat Race Coupler
- Easy to Design and Fabricate
- Sub-octave bandwidth

Asymmetric Tandem Coupler
- Difficult to Design and Fabricate
- Can be very broadband
- Possible but not practical

Waveguide Magic Tee
- The original high isolation, low loss
- Limited bandwidth

180° Couplers Can be Used as Baluns, but also Have an Isolation/Sum Port.
Marki Mission Statement
Empower our customers to **design faster, simplify production, eliminate complexity**, and **shatter performance barriers**
Amplifier Biasing Made Easy
Jacob Trevithick and Rob Maurer | April 16, 2020

A Brief Guide to Mixer Spurs
Harley Berman and Christopher Marki | April 30, 2020

Register for our next webinars via links in upcoming email.