TWO-TONE-TERMINATOR MIXER

The T3H-20G is a high performance mixer featuring LO/RF from 10 MHz to 20 GHz and IF from 10 MHz to 18 GHz. As with all T3 mixers, this mixer offers unparalleled nonlinear performance in terms of IIP3, P1dB, and spurious performance with a flexible LO drive requirement from +15 dBm to +25 dBm. The T3H-20G is offered in connectorized, surface mount, and drop-in style packaging, suitable for any type of system level integration. The T3H-20G is a form-fit-function replacement for the obsolete T3H-20, built using GaAs diodes instead of Si. For a list of recommended LO driver amps for all mixers and IQ mixers, see here.

Features
- Ultra-Broadband RF, LO, and IF
- Compatible with Sine or Square-Wave LO
- Square-Wave LO delivers Industry-Leading Spurious, IP3, and P1dB Performance
- Application Note: T3 Mixer Primer

Electrical Specifications - Specifications guaranteed from -55 to +100°C, measured in a 50Ω system.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LO (GHz)</th>
<th>RF (GHz)</th>
<th>IF (GHz)</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Diode Option LO drive level (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Loss (dB)</td>
<td>.01-20</td>
<td>.01-20</td>
<td>.01-18</td>
<td>8.5</td>
<td>9.5</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>Isolation (dB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO-RF</td>
<td>.01-20</td>
<td>.01-20</td>
<td></td>
<td>15</td>
<td>15</td>
<td></td>
<td>See Plots</td>
</tr>
<tr>
<td>LO-IF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-IF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input 1 dB Compression (dBm)</td>
<td>.01-20</td>
<td>.01-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Plot L (+15 to +25)</td>
</tr>
<tr>
<td>Input Two-Tone Third Order</td>
<td>.01-20</td>
<td>.01-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Plots L (+15 to +25)</td>
</tr>
<tr>
<td>Intercept Point (dBm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part Number Options

Please specify diode level and package style by adding to model number.

<table>
<thead>
<tr>
<th>Package Styles</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectorized</td>
<td>T3H-20GLS, T3H-20GLES-2</td>
</tr>
<tr>
<td>Microstrip1,2</td>
<td>T3H-20G</td>
</tr>
<tr>
<td>Surface Mount</td>
<td>CTG</td>
</tr>
<tr>
<td>(RoHS only)</td>
<td></td>
</tr>
</tbody>
</table>

1Connectorized test fixtures available for most microstrip and surface mount packages. Consult factory.
2For non-connectorized packages, specify I-port configuration by adding –1 or –2 suffix to model number. Default is –2 configuration when not specified.
TWO-TONE-TERMINATOR MIXER

T3H-20G

LO/RF 10 MHz to 20 GHz
IF 10 MHz to 18 GHz

Typical Performance
TWO-TONE-TERMINATOR MIXER

T3H-20G

LO/RF 10 MHz to 20 GHz
IF 10 MHz to 18 GHz

Typical Performance

RF to IF Isolation (dB)

IF VSWR

LO to RF Isolation (dB)

LO to IF Isolation (dB)

LO Even Harmonic to RF Isolation (dB)

LO Odd Harmonic to RF Isolation (dB)

LO Even Harmonic to IF Isolation (dB)

LO Odd Harmonic to IF Isolation (dB)
TWO-TONE-TERMINATOR MIXER

Page 4

T3H-20G

LO/RF 10 MHz to 20 GHz
IF 10 MHz to 18 GHz

Downconversion Spurious Suppression

Spurious data is taken by selecting RF and LO frequencies (±mLO±nRF) within the 10 MHz to 20 GHz RF/LO bands, which create a 100 MHz IF spuriously output. The mixer is swept across the full spuriously band and the mean is calculated. The numbers shown in the table below are for a -10 dBm RF input. Spurious suppression is scaled for different RF power levels by (n-1), where “n” is the RF spur order. For example, the 2RFx2LO spur is 61 dBc for a -10 dBm input, so a -20 dBm RF input creates a spur that is (2-1) x (-10 dB) dB lower, or 71 dBc.

Typical Downconversion Spurious Suppression (dBc): Square Wave (Sine Wave) LO⁵

<table>
<thead>
<tr>
<th>-10 dBm RF Input</th>
<th>0xLO</th>
<th>1xLO</th>
<th>2xLO</th>
<th>3xLO</th>
<th>4xLO</th>
<th>5xLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xRF</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1xRF</td>
<td>17 (18)</td>
<td>Reference</td>
<td>19 (27)</td>
<td>10 (11)</td>
<td>19 (34)</td>
<td>16 (18)</td>
</tr>
<tr>
<td>2xRF</td>
<td>60 (59)</td>
<td>65 (60)</td>
<td>61 (57)</td>
<td>65 (62)</td>
<td>63 (53)</td>
<td>64 (55)</td>
</tr>
<tr>
<td>3xRF</td>
<td>101 (96)</td>
<td>85 (75)</td>
<td>92 (86)</td>
<td>88 (81)</td>
<td>97 (92)</td>
<td>90 (76)</td>
</tr>
<tr>
<td>4xRF</td>
<td>>110</td>
<td>>110</td>
<td>>110</td>
<td>>110</td>
<td>>110</td>
<td>>110</td>
</tr>
<tr>
<td>5xRF</td>
<td>>120</td>
<td>>120</td>
<td>>120</td>
<td>>120</td>
<td>>120</td>
<td>>120</td>
</tr>
</tbody>
</table>

A sample downconversion spurious sweep is shown below. An LO which is 100 MHz higher than the RF is used to create a 100 MHz reference IF. A second LO is used to create a 2x2 spurious IF, also at 100 MHz (50 MHz fundamental IF). The difference between these two output levels is the spurious suppression in dBc. The mean value across the full 10 MHz to 20 GHz RF input band is the number shown in the table above.

![2RF x 2LO Spurious Suppression (dBc)](image)

Downconversion 2RFx2LO Spurious Data Example:

RF Input: 10 MHz to 20.0 GHz @ -10 dBm
LO for Reference: 110 MHz to 20.1 GHz
LO for Spurious: 60 MHz to 20.05 GHz
IF Output: 100 MHz
Upconversion Spurious Suppression

Spurious data is taken by mixing a 100 MHz IF with LO frequencies (±mLO±nIF), which creates an RF within the 10 MHz to 20 GHz RF band. The mixer is swept across the full spurious output band and the mean is calculated. The numbers shown in the table below are for a -10 dBm IF input. Spurious suppression is scaled for different IF input power levels by (n-1), where “n” is the IF spur order. For example, the 2IFx1LO spur is typically 60 dBc for a -10 dBm input, so a -20 dBm IF input creates a spur that is (2-1) x (-10 dB) dB lower, or 70 dBc.

Typical Upconversion Spurious Suppression (dBc): Square Wave (Sine Wave) LO§

<table>
<thead>
<tr>
<th>-10 dBm IF Input</th>
<th>0xIF</th>
<th>1xIF</th>
<th>2xIF</th>
<th>3xIF</th>
<th>4xIF</th>
<th>5xIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xIF</td>
<td>------</td>
<td>See LO to RF Isolation and LO Harmonic to RF Isolation Plots (Page 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1xIF</td>
<td>18 (17)</td>
<td>Reference</td>
<td>18 (22)</td>
<td>11 (11)</td>
<td>18 (27)</td>
<td>16 (18)</td>
</tr>
<tr>
<td>2xIF</td>
<td>62 (62)</td>
<td>60 (54)</td>
<td>60 (49)</td>
<td>67 (55)</td>
<td>61 (48)</td>
<td>64 (52)</td>
</tr>
<tr>
<td>3xIF</td>
<td>73 (72)</td>
<td>86 (72)</td>
<td>95 (78)</td>
<td>90 (66)</td>
<td>95 (69)</td>
<td>91 (65)</td>
</tr>
<tr>
<td>4xIF</td>
<td>>110</td>
<td>>110</td>
<td>>110</td>
<td>>110</td>
<td>>110</td>
<td>>110</td>
</tr>
<tr>
<td>5xIF</td>
<td>>120</td>
<td>>120</td>
<td>>120</td>
<td>>120</td>
<td>>120</td>
<td>>120</td>
</tr>
</tbody>
</table>

A sample upconversion spurious sweep is shown below. A 100 MHz reference IF input is used to create an RF output that is 100 MHz below the LO input (LO-IF=RF). A second LO (100 MHz higher) is combined with the same 100 MHz IF input (LO-2IF=RF) to create the same 10 MHz to 20 GHz RF output band. The difference between these two output levels is the spurious suppression in dBc. The mean value across the full RF output band is the number shown in the table above.
TWO-TONE-TERMINATOR MIXER

Page 6

T3H-20G

LO/RF 10 MHz to 20 GHz
IF 10 MHz to 18 GHz

T3

Sine Wave Input

or Square Wave Input

LO

RF

IF

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>DC Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>The LO port is DC short to ground and AC matched to 50 Ohms from 10 MHz to 20 GHz. Blocking capacitor is optional.</td>
<td>![LO Interface Schematic]</td>
</tr>
<tr>
<td>RF</td>
<td>The RF port is DC short to ground and AC matched to 50 Ohms from 10 MHz to 20 GHz. Blocking capacitor is optional.</td>
<td>![RF Interface Schematic]</td>
</tr>
<tr>
<td>IF</td>
<td>The IF port is DC blocked and AC matched to 50 Ohms from 1 MHz to 10 GHz.</td>
<td>![IF Interface Schematic]</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF DC Current</td>
<td>1 Amp</td>
</tr>
<tr>
<td>LO DC Current</td>
<td>1 Amp</td>
</tr>
<tr>
<td>RF Power Handling (RF+LO)</td>
<td>+25 dBm (L-Version)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55°C to +100°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +125°C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 1A</td>
</tr>
</tbody>
</table>

DATA SHEET NOTES:
1. Mixer Conversion Loss Plot IF frequency is 100 MHz.
2. Mixer Noise Figure typically measures within 0.5 dB of conversion loss for IF frequencies greater than 5 MHz.
3. Conversion Loss typically degrades less than 0.5 dB for LO drives 2 dB below the lowest and 3 dB above highest nominal LO drive levels.
4. Conversion Loss typically degrades less than 0.5 dB at +100°C and improves less than 0.5 dB at -55°C.
5. Square Wave Drive created with a chain to two ADM1-0026PA, biased at + 7/-0.25 Volts, with a +10 dBm input. Sine Wave data is taken with a +20 dBm LO input.
6. Square Wave Drive created with an ADM1-0026PA, biased at + 7/-0.25 Volts, driving an ADM3-0022PA, biased at +7/+15/-0.25/-0.65V.
7. Specifications are subject to change without notice. Contact Marki Microwave for the most recent specifications and data sheets.
8. Catalog mixer circuits are continually improved. Configuration control requires custom mixer model numbers and specifications.
Revision History

<table>
<thead>
<tr>
<th>Revision code</th>
<th>Revision Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>8/25/2020</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>

Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use or application of any product.