1. Device Overview

1.1 General Description
NLTL-6794SM is a MMIC non-linear transmission line (NLTL) based comb generator. This NLTL offers excellent phase noise performance over a low 100MHz to 1 GHz input frequency range with output tones beyond 30 GHz. NLTL-6794SM is fabricated with GaAs Schottky diode-based varactors and packaged into a surface mount 6x6 mm² QFN.

1.2 Features
▪ Low Phase Noise
▪ Broadband Input Frequencies
▪ No External DC Bias Required

1.3 Applications
▪ Comb Line Generation
▪ High Efficiency Multiplication
▪ Samplers
▪ Phase Locked Loops

1.4 Functional Block Diagram

1.5 Part Ordering Options

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Package</th>
<th>Green Status</th>
<th>Product Lifecycle</th>
<th>Export Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLTL-6794SM</td>
<td>6mm QFN</td>
<td>SM</td>
<td>RoHS</td>
<td>Active</td>
<td>EAR99</td>
</tr>
<tr>
<td>EVAL-NLTL-6794</td>
<td>Connectorized module, QFN reflowed onto PCB</td>
<td>EVAL</td>
<td>RoHS</td>
<td>Active</td>
<td>EAR99</td>
</tr>
</tbody>
</table>

1 Refer to our [website](https://www.marki-microwave.com) for a list of definitions for terminology presented in this table.
Table of Contents

1. Device Overview .. 1
 1.1 General Description................................. 1
 1.2 Features.. 1
 1.3 Applications 1
 1.4 Functional Block Diagram......................... 1
 1.5 Part Ordering Options 1

2. Port Configurations and Functions...... 3
 2.1 Port Diagram.................................. 3
 2.2 Port Functions................................ 3

3. Application Information 4
 3.1 Detailed Description.......................... 4
 3.2 Application Circuit: SM Package and EVAL Package........... 5

4. Specifications 6
 4.1 Absolute Maximum Ratings 6
 4.2 Package Information 6
 4.3 Recommended Operating Conditions 6
 4.4 Sequencing Requirements 6
 4.5 Electrical Specifications 7
 4.6 Typical Performance Plots 8
 4.6.1 Typical Performance Plots: Harmonic Output Power w/ Sine Input .. 8
 4.6.2 Typical Performance Plots: Harmonic Output Power w/ Square Wave from APM-7098PA 10
 4.6.3 Typical Performance Plots: Harmonic Output Power w/ Square Wave from ADM1-0026PA 13
 4.6.4 Typical Performance Plots: 5th Harmonic Output Power vs Bias Resistor 15
 4.6.5 Typical Performance Plots: 10th Harmonic Output Power vs Input Power .. 16
 4.6.6 Typical Performance Plots: Conversion Loss and Output Power vs Input Power 16
 4.6.7 Typical Performance Plots: Time and Frequency Domain Plots 18
 4.6.8 Typical Performance Plots: Residual Phase Noise 24

5. Mechanical Data 25
 5.1 SM Package Outline Drawing 25
 5.2 SM Package Footprint 25
 5.3 Evaluation Board Outline Drawing ... 26

Revision History

<table>
<thead>
<tr>
<th>Revision Code</th>
<th>Revision Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>December 2019</td>
<td>Initial Release</td>
</tr>
<tr>
<td>A</td>
<td>January 2022</td>
<td>Phase Noise Plot Added</td>
</tr>
</tbody>
</table>

Page 2 | Rev. A
2. Port Configurations and Functions

2.1 Port Diagram
A bottom-up view of the NLTL-6794’s SM package outline drawing is shown below. The NLTL should only be used in the forward direction, with the input and output ports given in Port Functions.

2.2 Port Functions

<table>
<thead>
<tr>
<th>Port</th>
<th>Function</th>
<th>Description</th>
<th>Equivalent Circuit for Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 5</td>
<td>Input</td>
<td>Pin 5 is diode connected and AC matched to 50Ω.</td>
<td>Pin 5</td>
</tr>
<tr>
<td>Pin 26</td>
<td>Output</td>
<td>Pin 26 is diode connected and AC matched to 50Ω.</td>
<td>Pin 26</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td>SM package ground path is provided through the ground paddle.</td>
<td>GND</td>
</tr>
</tbody>
</table>
3. Application Information

3.1 Detailed Description

The NLTL-6794SM belongs to Marki Microwave’s NLTL family of multipliers and non-linear transmission lines. The NLTL product line consists of passive GaAs MMIC non-linear transmission lines designed and fabricated with GaAs Schottky diode-based varactors. NLTLs take an input signal and create an impulse train of harmonics. Harmonic outputs up to and beyond 30 GHz are generated by the NLTL. The NLTL-6794SM is a 6 mm QFN and the EVAL-NLTL-6794 is a connectorized module with the QFN reflowed onto a PCB.

Port 1 supports up to 1GHz input signals. Port 2 will output integer multiples of the input signal (i.e., x2, x3, x4, etc.) up to a maximum of ~30 GHz given a -60dBm threshold. Higher harmonics are generated but at a lower efficiency.

The operating conditions of the NLTL are extremely important to optimize performance. High power inputs will increase the output power observed; however, the conversion efficiency will decrease. This is increasingly true for higher input frequencies and at input powers above the recommended limit. Optimal conversion efficiency of the NLTL is achieved using a square wave input with a fast rise time. Doing so causes a degradation in the 2nd output harmonic but otherwise improves the conversion efficiency at all other harmonics. It is for this reason that the typical performance plots in section 4.6 are shown driven with a sine wave input as well as with two amplifiers, the ADM1-0026PA, a square wave driver amp, and the APM-7098PA, a low phase noise amplifier. Section 4.6.7 shows the results of these driver amplifiers in time and frequency domain.

NLTL-6794SM requires no external DC bias. The self-bias of the diodes caused by the rectified RF input signal is sufficient for operation. For the best performance, optimization of the DC return path through a bias resistor is recommended for each specific application to optimize the harmonic output power distribution.

The phase noise of a non-linear transmission line is outstanding. If verification of performance is necessary, the application circuit used and input conditions are extremely important. NLTLs are AM sensitive. If there is excessive AM noise on the input of the NLTL, observing the output of the NLTL will show excessive PM/phase noise because of the high AM to PM conversion property of NLTLs.
3.2 Application Circuit: SM Package and EVAL Package

DC Path to Ground — An RF choke followed by a bias resistor should be used to provide a DC path to ground on the input port of the NLTL SM package. The current through the resistor will create Johnson/white noise; a shunt capacitor (for example 1uF) is used to filter noise generated by the resistor. This forms the circuit which self-biases the NLTL. The DC return to ground removes DC rectified current created by high power RF signal injection. A conical coil inductor is recommended to push the self-resonance frequency of the inductor past the operating bandwidth of the NLTL. The recommended inductance value of the conical coil inductor is 50nH or higher. If using a connectorized application setup, a bias tee will provide a DC path to ground and the NLTL can be biased with an additional resistor on the bias tee. See section 4.6.4 for output power vs bias resistor plots.

Blocking Capacitor — A DC blocking capacitor on the output of the NLTL-6794SM’s integrated circuit is there to prevent unwanted DC current flow from or to the output. If there is a DC signal on the input, place a DC block or bias tee on the input to avoid disrupting the self-biasing of the diodes.
4. Specifications

4.1 Absolute Maximum Ratings
The Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. If these limits are exceeded, the device may be inoperable or have a reduced lifetime.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Handling, at any Port</td>
<td>+33 dBm</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55 to +100 °C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to +125 °C</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Package Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>Human Body Model (HBM), per MIL-STD-750, Method 1020</td>
<td>1A</td>
</tr>
<tr>
<td>Weight</td>
<td>EVAL Package</td>
<td>18.3 g</td>
</tr>
</tbody>
</table>

4.3 Recommended Operating Conditions
The Recommended Operating Conditions indicate the limits inside which the device should be operated to guarantee the performance given in Electrical Specifications. Operating outside these limits may not necessarily cause damage to the device, but the performance may degrade outside the limits of the electrical specifications. For limits, above which damage may occur, see Absolute Maximum Ratings.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Nominal</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A, Ambient Temperature</td>
<td>-55</td>
<td>+25</td>
<td>+100</td>
<td>°C</td>
</tr>
<tr>
<td>Input Power</td>
<td>+20</td>
<td>+23</td>
<td>dBm</td>
<td></td>
</tr>
</tbody>
</table>

4.4 Sequencing Requirements
This is a passive NLTL that requires no external DC bias. Self-bias of the diodes is sufficient for operation. It is not required, but is recommended to provide a 50Ω termination to each port before applying RF power.
4.5 Electrical Specifications

The electrical specifications apply at $T_A=+25°C$ in a 50Ω system. Typical data shown is for the NLTL used in the forward direction with a +20 dBm 250MHz sine wave input and no bias resistor (open circuit) unless otherwise stated\(^2\).

Min and Max limits apply only to our connectorized units and are guaranteed at $T_A=+25°C$. All bare die are 100% DC tested and visually inspected.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input (Port 1) Frequency Range</td>
<td>0.1</td>
<td>1</td>
<td>GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output (Port 2) Frequency Range</td>
<td>0.1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Power</td>
<td>100 MHz Input</td>
<td>+20(^3)</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 MHz Input</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 MHz Input</td>
<td>23.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>750 MHz Input</td>
<td>29.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 GHz Input</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Frequency Harmonic Output(^4)</td>
<td>100 MHz Input</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 MHz Input</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 MHz Input</td>
<td>29.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>750 MHz Input</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 GHz Input</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approximate Harmonic Output Power with 100 MHz Input\(^5\)

\[P_{\text{Harmonic}} = -0.82 \times \text{(Harmonic Order)} - 10.7 \]

Approximate Harmonic Output Power with 250 MHz Input\(^5\)

\[P_{\text{Harmonic}} = -0.6 \times \text{(Harmonic Order)} - 3.3 \]

Approximate Harmonic Output Power with 500 MHz Input\(^5\)

\[P_{\text{Harmonic}} = -1.1 \times \text{(Harmonic Order)} + 4.2 \]

Approximate Harmonic Output Power with 750 MHz Input\(^5\)

\[P_{\text{Harmonic}} = -1.9 \times \text{(Harmonic Order)} + 5.5 \]

Approximate Harmonic Output Power with 1 GHz Input\(^5\)

\[P_{\text{Harmonic}} = -2.8 \times \text{(Harmonic Order)} + 6.0 \]

\(^2\) Square Wave input generated using either the ADM1-0026PA or the APM-7098PA amplifier at +7V/-0.3V and +8V/+8V respectively.

\(^3\) Input power to square wave driver amps is lower but high enough to saturate the amplifier. Power levels in square wave plots refer to input power to the amplifier, not the amplifier’s output power.

\(^4\) The Highest Frequency Harmonic Output was determined as the highest frequency harmonic that was above a -60dBm threshold as seen on a spectrum analyzer.

\(^5\) Approximate Harmonic Output Power equations are determined by taking points on the output comb on a spectrum analyzer and creating a linear fit equation to relate the harmonic order to its power level. Consequently, the equations offer an approximation of output harmonic level, not an exact measurement.
4.6 Typical Performance Plots
Input power levels refer to drive level going into the NLTL chain input in section 3.2. Square wave plots are referenced to drive level entering the square wave driver amplifier, not the output power of the amplifiers.

4.6.1 Typical Performance Plots: Harmonic Output Power w/ Sine Input

- Fundamental Output Power (dBm)
- 2nd Harmonic Output Power (dBm)
- 3rd Harmonic Output Power (dBm)
- 4th Harmonic Output Power (dBm)
- 5th Harmonic Output Power (dBm)
- 6th Harmonic Output Power (dBm)
4.6.2 Typical Performance Plots: Harmonic Output Power w/ Square Wave from APM-7098PA
4.6.3 Typical Performance Plots: Harmonic Output Power w/ Square Wave from ADM1-0026PA
4.6.4 Typical Performance Plots: 5th Harmonic Output Power vs Bias Resistor
4.6.5 Typical Performance Plots: 10th Harmonic Output Power vs Input Power

4.6.6 Typical Performance Plots: Conversion Loss and Output Power vs Input Power
This space is intentionally left blank
4.6.7 Typical Performance Plots: Time and Frequency Domain Plots

+20dBm 250MHz Sine Wave Input

This space is intentionally left blank
+17dBm 250MHz Sine Wave Input

Into NLTL

Out of NLTL

This space is intentionally left blank
+15dBm 250MHz Sine Wave into ADM1-0026PA

Out of ADM1-0026PA (Into NLTL)

Out of NLTL

This space is intentionally left blank
+10dBm 250MHz Sine Wave into ADM1-0026PA

Out of ADM1-0026PA (Into NLTL)

Out of NLTL

This space is intentionally left blank
+7dBm 250MHz Sine Wave into APM-7098PA

Out of APM-7098PA (Into NLTL)

Out of NLTL

This space is intentionally left blank
+0dBm 250MHz Sine Wave into APM-7098PA

Out of APM-7098PA (Into NLTL)

Out of NLTL

This space is intentionally left blank
4.6.8 Typical Performance Plots: Residual Phase Noise

Residual Phase Noise: 500MHz Sine Wave Input, 8th Harmonic (dBc/Hz)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hz Offset</td>
<td>-112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Hz Offset</td>
<td>-125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 Hz Offset</td>
<td>-135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 KHz Offset</td>
<td>-147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 KHz Offset</td>
<td>-155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 KHz Offset</td>
<td>-170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 MHz Offset</td>
<td>Thermal Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

500 MHz, +23 dBm Sine Wave Input
5. Mechanical Data

5.1 SM Package Outline Drawing

1. Substrate material is Ceramic.
2. All unconnected pins should be connected to PCB RF ground.

5.2 SM Package Footprint

QFN-Package Surface-Mount Landing Pattern

Click here for a DXF of the above layout.
Click here for leaded solder reflow. Click here for lead-free solder reflow
5.3 Evaluation Board Outline Drawing

Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use or application of any product.