Tag Archives: t3mixers

Repeatability of T3 Mixers and Other Handmade Microwave Components in Six Charts

T3 mixers are the highest dynamic range mixer available. They are also handbuilt parts, subject to unit to unit and lot to lot variability. In this blog post we attempt to quantify that variability. Our sample is 10 T3-08LQP mixers from 5 different date codes. All the date codes are separated by at least a month, totaling nearly two years.  Therefore, the variation you see in the plots below accurately represent the variation a designer could expect across two years in the life of their product. Of course there are always outliers, but the following represents typical performance variation.

Conversion Loss

T3 Conversion Loss Variability

The T3: A High Dynamic Range Mixer for 4G, LTE, and 5G testing

Spectral regrowth is a big deal for you. In order for the wireless revolution to continue apace, enabling you to watch funny cat videos faster in more crowded environments, spectral regrowth must be conquered wherever it occurs. Spectral regrowth is what occurs when a broadband or spread spectrum signal intermodulates with itself, creating deterministic products that look like noise, limiting the signal to noise ratio of the signal. According to Shannon’s theorem this limits the information capacity of the signal, and thus your video takes longer to load (for some reason this always happens at the worst time).

Spectral regrowth comes from a handful of sources. It can come from mixers, but in installed communication systems it tends to come from the power amplifiers at the transmitter and the connections to the antenna itself (called ‘passive intermodulation’ or PIM). It is made much worse by using higher power and by denser concentrations of signals. Both of these factors are increasingly common as data capacity is increased. This is why highly linear amplifiers and PIM are both big buzzwords in the mobile communications world right now.

What is not always talked about is that ‘spectral regrowth’ in the mobile communication world is the same as ‘two-tone intermodulation distortion’ or ‘IP3’ in the microwave world. Two tone modulation distortion is what causes spectral regrowth, just summed over all of the frequencies involved in the signal. This can be seen by moving from two tone testing to three tone testing in a standard double balanced mixer, the Marki M1-0212SA:

M1-0212SA Comparison

World Record IP3/Linearity Performance

Check out this video:

This video demonstrates world record linearity performance. This is a standard two tone test with increasing local oscillator drive power. The device under test is a T3 mixer, with an increasing square wave drive. All the tones except for the two tones in the middle are intermodulation distortion products. As you increase the drive levels into the mixer these intermodulation distortion products completely disappear, up to 45 dB Input IP3. Also since the conversion loss is lower than conventional mixers the Output IP3, which is what really matters, is even that much better than standard mixers. The T3 is capable of this kind of performance from 10 MHz to 20 GHz or higher! There really is no competition.

Here, for reference, is what a mixer that was previously considered ‘good’ (~20-25 dBm IIP3):